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Abstract. In a gauge-fixed language gluon-meson duality can be described as the Higgs mechanism for
“spontaneous symmetry breaking” of color. We present a mean field computation which suggests that this
phenomenon is plausible in QCD. One obtains realistic masses of the light mesons and baryons.

A dual description of QCD in the low momentum or strong
coupling region should contain the light meson and baryon
degrees of freedom as the relevant fields. This is opposed
to the quark-gluon description in the high momentum or
weak coupling regime. We have proposed recently [1], [2]
that for three light flavors such a dual description indeed
exists, with the light gluon fields associated to the light
vector meson octet and the nine quark fields to the light
baryon octet and a singlet. (For some related ideas1 see [3],
[4].) This picture realizes gluon-meson duality and quark-
baryon duality in a straightforward way. Already a very
simple form of an effective action can account for realistic
masses of the light baryons and the light pseudoscalar and
vector meson octets. It also leads to realistic interactions
of the Goldstone bosons and predicts the couplings of the
vector mesons to pions and baryons in the observed range.

The key ingredient of this picture is a condensate of
a suitable quark-antiquark operator which is associated
to a color octet. Whereas in [1] we have mainly used a
gauge-invariant language in terms of nonlinear fields we
concentrate in this note on a (linear) gauge-fixed version
(preferably in Landau gauge). In this version the SU(3)-
color group is “spontaneously broken” by the expecta-
tion value of the color octet condensate2. The relevant
quark-antiquark condensate also transforms as an octet
under the vectorlike SU(3) flavor group. Its expectation
value conserves a diagonal global SU(3) symmetry of com-
bined color and flavor rotations. This is associated with
the physical flavor group of the “eightfold way”. Due to
this “color-flavor locking” [4] the quark fields transform
as an octet and a singlet under the physical flavor group.

a e-mail: C.Wetterich@thphys.uni-heidelberg.de
1 In contrast to [3], we consider here the ground state of stan-

dard QCD, without additional “fundamental” light-colored
scalar fields and without additional gauge interactions. We dis-
cuss the vacuum and do not deal with the properties of QCD
at very high baryon density

2 We use the language of spontaneous symmetry breaking
similar to the electroweak theory, despite the fact that gauge
symmetries are never broken in a strict sense

They carry the appropriate integer electric charges and
can be associated with baryons3. The octet of gluons ac-
quires a mass through the Higgs mechanism and can be
identified with the light vector mesons4. Chiral symmetry
is spontaneously broken by the octet condensate, as well
as by the usual singlet condensate. In the absence of quark
masses this leads to eight Goldstone bosons.

In [1] we have mainly discussed the consequences of
an assumed expectation value of a color octet quark-an-
tiquark bilinear. Here we present a first investigation if
it is plausible that such a vacuum expectation value is
generated dynamically in QCD. In this first step we want
to identify the mechanisms which could lead to dynami-
cal spontaneous color symmetry breaking. We do not yet
intend quantitative estimates.

For this purpose we treat the quantum fluctuations of
the light baryons or quarks and the light mesons in the
mean field approximation. We consider the non-perturba-
tive region of momenta q2 < k2, with k an appropriate
cutoff (typically k = 850 MeV). The form of the effec-
tive one-particle irreducible multiquark interactions at the
scale k is largely dictated by chiral symmetry, color sym-
metry and the discrete symmetries P and C, as well as by
the known form of the axial anomaly. We include effective
interactions involving up to eight quarks or antiquarks.
The coefficients of the corresponding invariants in the ef-
fective action at the scale k are treated, however, as free
parameters. We demonstrate that a reasonable choice of
these couplings leads indeed to spontaneous color sym-
metry breaking and realistic masses for all light particles.
This is largely due to the fermion fluctuations with mo-

3 The gauge fixing is not compatible with the phase trans-
formations corresponding to baryon number. In the gauge-
invariant language with nonlinear fields it can be verified that
baryons carry indeed three times the baryon number of the
quarks [2]

4 We note, however, that the φ-meson and the appropriate
mixing of vector mesons is not yet contained in the simplest
version. See [2] for an extension with addition of the singlet
vector meson
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menta 0 < q2 < k2. They are cut off by mass terms in
case of chiral symmetry breaking, whereas their contribu-
tion disfavors a ground state with absence of octet and
singlet condensates. A second crucial ingredient are cubic
couplings which reflect the chiral UA(1) anomaly. A future
QCD calculation will have to determine the values of the
multiquark couplings at the scale k. Only after this second
step one may draw a definite conclusion about the real-
ization of spontaneous color symmetry breaking in QCD.

It is convenient to introduce for the color singlet and
octet quark-antiquark bilinears the notation

ϕ̃
(1)
ab = ψ̄L ib ψR ai , ϕ̃

(2)
ab = −ψ̄R ib ψL ai

χ̃
(1)
ij,ab = ψ̄L jb ψR ai − 1

3
ψ̄L kb ψR ak δij

χ̃
(2)
ij,ab = −ψ̄R jb ψL ai +

1
3

ψ̄R kb ψL ak δij (1)

where i, j, k are color indices and a, b refer to flavor. With
respect to the chiral flavor group SU(3)L × SU(3)R, the
bilinears ϕ̃(1) and χ̃(1) transform as (3̄, 3) whereas ϕ̃(2) and
χ̃(2) are in the (3, 3̄) representation. Parity maps ϕ̃(1) ↔
ϕ̃(2), χ̃(1) ↔ χ̃(2) whereas under charge conjugation the
transformation is ϕ̃(i) ↔ ϕ̃(i)T , χ̃

(i)
ij,ab ↔ χ̃

(i)
ji,ba. At the

cutoff we consider an effective Lagrangian of the form5

Lk = iψ̄iaγµ∂µψai − Ũk(ϕ̃, χ̃) + LMK + Lη (2)

with

Ũk(ϕ̃, χ̃)
= 2λσρ̃ + 2λχρ̃χ + τσρ̃2 + τχρ̃2

χ + τγ ρ̃ρ̃χ (3)

+ζ
{

detϕ̃(1) + detϕ̃(2) + E
(

ϕ̃(1), χ̃(1)
)

+ E
(

ϕ̃(2), χ̃(2)
)}

Here the multiquark interactions Ũk are expressed in
terms of the chirally invariant color singlets

ρ̃ = ϕ̃
(1)
ab ϕ̃

(2)
ba , ρ̃χ = χ̃

(1)
ij,ab χ̃

(2)
ji,ba (4)

and the ’t Hooft term for the chiral anomaly [5] (with
coefficient ζ) with

E(ϕ̃, χ̃) =
1
6

εa1a2a3εb1b2b3 ϕ̃a1b1 χ̃ij,a2b2 χ̃ji,a3b3 (5)

We assume that the quantum fluctuations with momenta
q2 > k2 have already been integrated out, such that the
remaining functional integral has an effective ultraviolet
cutoff k.

In QCD perturbation theory the one-particle-irre-
ducible four-quark interactions ∼ ρ̃, ρ̃χ are generated by
box diagrams with

λσ,χ =
Lσ,χ

32π2

g4

k2 , Lσ =
23
9

l43 , Lχ =
13
24

l43 (6)

5 Gluons are incorporated by a covariant derivative of the
quarks and an appropriate kinetic term involving their field
strength

Here k is the infrared cutoff for the loop momenta and
the constant l43 is about one, its value depending on the
precise implementation of the cutoff. The coefficients τl
would correspond to eight quark interactions generated by
diagrams with four gluons, τl ∼ g8/(32π2k8). We will use,
however, a scale k ≈ 850 MeV in the non-perturbative
domain and treat for the present work the couplings λl

and τl as free parameters. For the ’t Hooft interaction
we have used an appropriate Fierz transformation, and ζ
is again treated as a free parameter. The terms Lη and
LMK contain sources for the quarks and quark-antiquark
bilinears

Lη = −η̄ψ − ηψ̄ (7)

LMK = −Mbaϕ̃
(2)
ab − M†

baϕ̃
(1)
ab − Kij,abχ̃

(2)
ji,ba − K∗

ij,abχ̃
(1)
ij,ab

The physical situation corresponds to η = η̄ = 0, Kij,ab =
0, Mab(x) = diag(mu, md, ms) with mq the (current)
quark masses.

The first step in a mean field discussion of the multi-
quark action, S =

∫
d4xLk, is partial bosonization. We

introduce a factor of unity (up to an irrelevant overall
constant) in the functional integral for the partition func-
tion

Z[M, K, η, η̄]

=
∫

DψDψ̄ exp(−S)

=
∫

DψDψ̄DσDξ exp

{
− S −

∫
d4x
[
Uk

(
σR
ab

−ϕ̃R
ab, σ

I
ab − ϕ̃I

ab, ξ
R
ij,ab − χ̃R

ij,ab, ξ
I
ij,ab − χ̃I

ij,ab

)
+LMK

(
σR
ab − ϕ̃R

ab, σ
I
ab − ϕ̃I

ab, ξ
R
ij,ab − χ̃R

ij,ab, ξ
I
ij,ab

−χ̃I
ij,ab

)]}
(8)

with

ϕ̃R
ab =

1
2

(
ϕ̃

(1)
ab + ϕ̃

(2)
ba

)
,

ϕ̃I
ab = − i

2

(
ϕ̃

(1)
ab − ϕ̃

(2)
ba

)
χ̃R
ij,ab =

1
2

(
χ̃

(1)
ij,ab + χ̃

(2)
ji,ba

)
,

χ̃I
ij,ab = − i

2

(
χ̃

(1)
ij,ab − χ̃

(2)
ji,ba

)
(9)

The function Uk is determined by the requirement that
Uk(−ϕ̃R, −ϕ̃I , −χ̃R,−χ̃I) = Ũk(ϕ̃R, ϕ̃I , χ̃R, χ̃I) is given
by (3) expressed in the appropriate variables.

The effective Lagrangian of the bosonized theory

L(B) = L(ϕ̃, χ̃)+Uk(σ−ϕ̃, ξ−χ̃)+LMK(σ−ϕ̃, ξ−χ̃) (10)

is next expanded in powers of ϕ̃ and χ̃. The terms in-
volving no fermion fields result in masses, sources, and
interactions for the scalars

Ls = Uk(σ, ξ) − Tr(M†σ + Mσ†)
−(K∗

ij,abξij,ab + Kij,abξ
∗
ij,ab) (11)



Ch. Wetterich: Gluon-meson duality in the Mean Field Approximation 579

The potential Uk obtains from (3) by the replacements
ϕ̃

(1)
ab → σab, ϕ̃

(2)
ab → σ†

ab, χ̃
(1)
ij,ab → ξij,ab, χ̃

(2)
ij,ab → ξ∗

ji,ba,
ρ̃ → Tr σ†σ, ρ̃χ → ξ∗

ij,abξij,ab, where we have combined
σab = σR

ab + iσI
ab, ξij,ab = ξRij,ab + iξIij,ab. Furthermore,

the sign of the term ζ is switched. The chiral and discrete
transformation properties carry over from ϕ̃, χ̃ to σ, ξ and
Uk is therefore invariant under the corresponding symme-
tries. The inclusion of the eight-quark interactions in (3)
guarantees that for positive τl the functional integral (8) is
well defined and Uk is bounded from below. On the other
hand, the terms in the expansion of Uk + LMK which in-
volve only fermion fields precisely cancel the multiquark
interactions −Ũk and the source LMK for the quark bi-
linears. Chiral symmetry breaking due to quark masses
appears now in the form of a linear source term for the
scalar fields (11). The terms linear in the quark bilinears
give rise to Yukawa-type interactions, involving a quark-
antiquark pair and one or several scalar fields. Finally, the
terms ∼ ζ and τl also produce interactions between four
or six fermions and one or two scalars. In our mean field
approximation these residual interactions involving more
than two quark or antiquark fields are neglected.

We want to perform the remaining fermionic functional
integral for a scalar background field which preserves a
“diagonal” vector-like SU(3) symmetry and is invariant
under C and P

σab = σ̄δab , ξij,ab =
1√
6

ξ̄

(
δiaδjb − 1

3
δijδab

)
(12)

For this configuration6 the effective Lagrangian (10) is
given by

L(B) = Ucl

(
σ̄, ξ̄
)

+ iψ̄iaγµ∂µψai + M8
(
σ̄, ξ̄
)

ψ̄
(8)
ia γ̄ψ

(8)
ai

+M1
(
σ̄, ξ̄
)

ψ̄(1)γ̄ψ(1) (13)

with γ̄ the Euclidean analogue7 of γ5. The fermionic part
involves a mass term for the SU(3)-singlets and octets

ψ(1) =
1√
3

ψaa , ψ
(8)
ai = ψai − 1√

3
ψ(1)δai (14)

6 We take both σ̄ and ξ̄ to be real such that P is conserved.
In principle, ξ̄ could have a relative phase as compared to σ̄.
A purely imaginary ξ̄ is favored by the anomaly term in Uk

if ζσ̄ is positive at the minimum. From this point of view one
may prefer a negative value of ζ. On the other hand, invariants
of the type ρ̃ρ̃χ − 1

4 (σ
†
abξijbcσ

†
cdξjida + c.c.) can also favor real

ξ̄. We have not included in the present discussion invariants
which vanish identically for the configuration (12) and real
σ̄, ξ̄ as the one above. Parity conservation remains an issue in
our approach. In order to settle this issue one needs to include
invariants which contribute to a background field (12) with an
arbitrary phase for ξ̄. Also the quantum fluctuations will have
to be treated in this more general setting. At the present stage
the positive mass term M2

η′ for the η′-meson (see below) is a
strong hint that the ground state preserves parity

7 For our conventions see [6]

where the latter is identified with the light baryon octet.
One finds

M8 = 2λσσ̄ − 2
3
√

6
λχξ̄ − ζ

(
σ̄2 − 2

27
ξ̄2 +

1
9
√

6
σ̄ξ̄

)

+6τσσ̄3 +
4
3

τγ ξ̄2σ̄ − 1√
6

τγ σ̄2ξ̄ − 8
9
√

6
τχξ̄3 (15)

M1 = 2λσσ̄ +
16

3
√

6
λχξ̄ − ζ

(
σ̄2 − 2

27
ξ̄2 − 8

9
√

6
σ̄ξ̄

)

+6τσσ̄3 +
4
3

τγ ξ̄2σ̄ +
8√
6

τγ σ̄2ξ̄ +
64

9
√

6
τχξ̄3 (16)

The classical scalar potential reads

Ucl = −2mσ̄ + 6λσσ̄2 +
8
3

λχξ̄2 − 2ζσ̄3 +
4ζ

9
σ̄ξ̄2

+9τσσ̄4 +
16
9

τχξ̄4 + 4τγ σ̄2ξ̄2 (17)

with m = mu + md + ms. The sign of ζ may be positive
or negative8 and we discuss below acceptable scenarios for
both cases. For positive couplings λl, τl the classical po-
tential typically9 has its minimum for ξ̄ = 0. Then spon-
taneous symmetry breaking of color symmetry can only
be induced by the low momentum fluctuations.

The fermionic functional integral is easily evaluated
and gives a contribution to the effective scalar potential

U(σ̄, ξ̄) = Ucl(σ̄, ξ̄) + ∆qU(σ̄, ξ̄) (18)

For a sharp ultraviolet cutoff k this reads

∆qU = − 1
8π2

∫ k2

0
dxx[8 ln(x + M2

8 ) + ln(x + M2
1 )] (19)

and one observes that ∆qU respects the (accidental?) sym-
metry10 of the classical potential ξ̄ → −ξ̄. The quark
fluctuations tend to destabilize the minimum of Ucl at
σ̄ = ξ̄ = 0 for m = 0, since nonzero values of M8, M1
are preferred. They give a negative contribution to the
quadratic term obtained by an expansion of ∆qU for small
σ̄ and ξ̄

∆qU = − k2

2π2

(
9λ2

σσ̄2 +
4
3

λ2
χξ̄2
)

+ ... (20)

For λσk2 > 4π2/3 , λχk2 > 4π2 they overwhelm the
classical mass terms 6λσσ̄2, (8/3)λχξ̄2 for σ̄ and ξ̄, re-
spectively. We conclude that the quark fluctuations are

8 Only the relative phase between ζ and m is relevant. Con-
servation of C,P requires that the phases of ζ and m are equal
up to a minus sign and we take both ζ and m real. We choose
a phase convention such that the expectation value of σ̄ is pos-
itive and concentrate on the case mq > 0

9 This clearly holds if ζσ̄ is positive at the minimum. For
negative ζσ̄ one may also envisage the possibility that already
the effective action (2) has its minimum for ξ̄ �= 0
10 This is not trivial since an invariant εa1a2a3 εb1b2b3 εi1i2i3

εj1j2j3 χi1j1,a1b1 χi2j2,a2b2 χi3j3,a3b3 + c.c. is consistent with
color and chiral symmetries as well as P and C
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the main driving force for spontaneous chiral symmetry
breaking. Furthermore, the cubic “anomaly terms” favor
the condensates even in presence of small enough positive
quadratic terms at the origin. In mean field theory one
has to determine the minimum of U . We have done this
by numerically solving the field equations. In this context
we note the simple closed form of the contribution from
∆qU , namely

∂

∂σ̄
∆qU = 8A8

∂M8

∂σ̄
+ A1

∂M1

∂σ̄
,

∂

∂ξ̄
∆qU = 8A8

∂M8

∂ξ̄
+ A1

∂M1

∂ξ̄

A1,8 =
M3

1,8

4π2

{
ln

(
1 +

k2

M2
1,8

)
− k2

M2
1,8

}
(21)

For a large range of couplings we find indeed a nonzero
expectation value for the octet condensate ξ̄!

As long as the effective couplings λl, τl, ζ are not com-
puted from QCD, the predictive power of the present ap-
proach is limited. We will be satisfied here by presenting
a set of perhaps reasonable values for these couplings for
which a realistic phenomenology can be obtained. Some of
the parameters are tuned to fit with observed masses. We
choose k = 850 MeV equal to the average of the ρ-meson
or gluon mass. The renormalization scale for the quark
mass is taken at µ = 1 GeV in the vicinity of the baryon
masses, and we take for the quark mass sum m(µ) = 220
MeV. Our selected parameters are

λσk2 = 53(63, 57), λχk2 = 0.47(0.9, 5.8),

ζk5 = 356(32, −73.5), τσk8 = 4700(185, 8060),
τχk8 = 87(44, 314), τγk8 = 5200(350, 1570) (22)

Here the numbers in brackets refer to two sets with in-
clusion of fluctuations of the gauge bosons and the pseu-
doscalar octet, as discussed below. For these values the
minimum of U occurs for

〈σ̄〉 =
1
2
(235 MeV)3 , 〈ξ̄〉 =

1
2
(400(470, 280) MeV)3

(23)
and we observe the direct relation of 〈σ̄〉 with the (sin-
glet) quark-antiquark condensate11 and the parameters B
and f of chiral perturbation theory (f is the meson decay
constant)

〈σ̄〉 = −1
2
〈ψ̄ψ〉(µ) =

1
2

B(µ)f2 (24)

The average mass of the lightest baryon octet and singlet
obtains by evaluating (15), (16) for the expectation value
(23). For our parameters they coincide with the observed
value of the average octet mass and an arbitrary fixed

11 In our Euclidean conventions 〈ψ̄ψ〉 corresponds to the ex-
pectation value of ψ̄γ̄ψ

singlet mass12.

M8 = 1.15 GeV , M1 = 1.4 GeV (25)

It is instructive to determine the masses of the most
important bosonic excitations for our parameter set. For
a computation of the scalar masses one needs the scalar
wave function renormalizations which have not been com-
puted so far. Altogether, the fields σ and ξ contain 162
real scalars which transform under SU(3), P and C as

2 × (1−+ + 1++ + 8−+ + 8++ + 8−− + 8+−)

+10−− + 10+− + 1̄0−− + 1̄0+− + 27−+ + 27++ (26)

One octet is absorbed by the Higgs mechanism into the
longitudinal component of the massive gluons. The rep-
resentations 10, 1̄0, 27 contain scalars with electric charge
two. Many of these states may be too broad to be de-
tected experimentally as resonances. Of particular interest
are the lightest pseudoscalar octet 8−+ which corresponds
to massless Goldstone bosons for mq → 0, and the light-
est pseudoscalar singlet 1−+ associated with the η′-meson.
They are most easily described in a nonlinear representa-
tion [2]

σab = 〈σ̄〉Uab ,

ξij,ab =
1√
6
〈ξ̄〉
(

U
1/2
ai U

1/2
jb − 1

3
δijUab

)
,

U = exp
(

− i

3
θ

)
exp

(
i
Πzλz

f

)
,

U†U = 1 (27)

If we parametrize the effective scalar kinetic terms13 by

Ls,kin = Zσ∂µσ∗
ab∂µσab + Zξ∂

µξ∗
ij,ab∂µξij,ab (28)

the kinetic term for the pseudoscalar nonet reads

LU,kin =
(

Zσ〈σ̄〉2 +
7
36

Zξ〈ξ̄〉2
)

Tr∂µU†∂µU

=
1
4

f2 Tr∂µU†∂µU (29)

An average meson decay constant f = 106 MeV corre-
sponds to

Zσ +
7
36

Zξ(ξ̄/σ̄)2 = Zσ(1 + x) = (350 MeV)−4,

x =
7
36

〈ξ̄〉2
〈σ̄〉2

Zξ

Zσ
(30)

12 The baryon singlet is presumably very broad and it is not
obvious if it should be associated with an observed resonance.
The lowest mass resonance with the correct quantum numbers
occurs at 1.6 GeV
13 Presumably the dominant contribution to the kinetic terms
is induced by quantum fluctuations with q2 < k2. It can also
be computed in the mean field approximation. Integrating out
first the fermions will also induce an effective gauge coupling
between the gluons and the color octet ξ, replacing ∂µξ by a
suitable covariant derivative
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If this is the case, chiral symmetry guarantees realistic
masses for the pions, kaons, and the η-meson. Neglecting
SU(3)-violating effects for the expectation values they are
given by

M2
π = 2〈σ̄〉(mu + md)/f2,

M2
K = 2〈σ̄〉(mu + ms)/f2 (31)

independently of details of the potential [7]. For realistic
f and appropriate quark mass ratios mu/ms, md/ms the
expectation values (23) lead to the observed light pseu-
doscalar meson masses.

If we associate the η′-meson with θ in (27), neglect its
mixing with other mesons with the same quantum num-
bers and assume that its kinetic term is dominated by (29)
we find

M2
η′ =

36ζ

f2

(
σ̄3 − 2

9
σ̄ξ̄2 + ∆η′

)
+ m2

g (32)

where mg = 410 MeV is the contribution from explicit
chiral symmetry breaking due to the current quark masses
and

∆η′ = 8A8

(
σ̄2 − 2

27
ξ̄2 +

1
9
√

6
σ̄ξ̄

)
·
(

2λσσ̄ − 2
3
√

6
λχξ̄

+6τσσ̄3 +
4
3

τγ ξ̄2σ̄ − 1√
6

τγ σ̄2ξ̄ − 8
9
√

6
τχξ̄3

)

+A1

(
σ̄2 − 2

27
ξ̄2 − 8

9
√

6
σ̄ξ̄

)
·
(

2λσσ̄ +
16

3
√

6
λχξ̄

+6τσσ̄3 +
4
3

τγ ξ̄2σ̄ +
8√
6

τγ σ̄2ξ̄ +
64

9
√

6
ξ̄3
)

(33)

arises from the θ-dependence of the fermionic fluctuation
determinant giving rise to ∆qU . As is should be, Mη′ van-
ishes for zero quark masses and vanishing chiral anomaly
(ζ = 0). For our parameters (32) yields the observed value
Mη′ = 960 MeV.

The gluons are coupled to the colored scalar fields ξ
and therefore acquire a mass through the Higgs mecha-
nism. We identify this mass with the average mass of the
light vector meson octet Mρ =850 MeV. Denoting the ef-
fective gauge coupling by g one obtains

Mρ = g Z
1/2
ξ 〈ξ̄〉 =

3√
7

(
x

1 + x

)1/2

gf (34)

For our set of parameters one finds a large value of x
if Zσ/Zξ is not too large For Zσ/Zξ = 0.44(3, 0.13) this
yields14

x = 10.9(4, 4), g = 7.4(7.9, 7.9),
Zξ = (530(690, 320) MeV)−4 (35)

14 The relation to the parameters used in [1] is given by
m2

φ = 2λσ/Zσ = (5.1(3.6, 3.56) GeV)2, m2
χ = 2λχ/Zξ =

(0.32(0.75, 0.42) GeV)2, h = 2λσZ
−1/2
σ = 62(48, 46), h̃ =

2λχZ
−1/2
ξ = 0.36(1.2, 1.8), ε̃φ = m2

φ/(h
2k2) = (2λσk

2)−1 =
0.009(0.008, 0.009), ε̃χ = m2

χ/(h̃2k2) = (2λχk
2)−1 =

1(0.55, 0.086), with ϕ = Z
1/2
σ σ, χ = Z

1/2
ξ ξ

One may want to include the effects of gauge boson
and scalar fluctuations in the effective potential. In the
mean field approximation one finds

∆gU =
3

4π2

∫ k2

0
dx x ln

(
x + g2Zξ ξ̄

2)

∆sU =
1

32π2

∑
s

∫ k2

0
dx x ln(x + M2

s ) (36)

for the gauge bosons and scalars, respectively. Here s
counts the scalars or pseudocscalars with mass Ms de-
pending on σ̄ and ξ̄. Additional uncertainties arise from
the possible (σ̄, ξ̄)-dependence of the wave function renor-
malizations Zσ,ξ and g. We take here Zσ and Zξ constant
and use ∂g/∂ξ̄ = ηgg, ∂g/∂σ̄ = 0. As long as ξ̄A, A > 0,
acts as an infrared cutoff for the gauge boson fluctua-
tions, the quantity ηgg is related to the non-perturbative
β-function of g. From asymptotic freedom one expects ηg
to be negative. Typically |ηg(g)| increases from small per-
turbative values ∼ g2 for small g to large values in the
range of large g. The effective ξ̄-dependent gluon mass
obeys ∂Mρ(ξ̄)/∂ξ̄ = (1 + ηg)Mρ(ξ̄) and therefore has a
minimum for ηg = −1. One concludes that ∆gU is prob-
ably minimal for ξ̄ > 0, namely for ηg(g(ξ̄)) = −1. For
ηg(ξ̄ → 0) < −1 also the gauge boson fluctuations favor
color symmetry breaking. For our numerical solution we
show the results for ηg(〈ξ̄〉) = −1.9, −1.15. (We mention
that for ηg(〈ξ̄〉) = −1 the contribution from ∆gU drops
out in the solution of the field equations.)

For the scalar fluctuations we have only included the
light pseudoscalar octet. According to (31) and (29) one
finds M2

s ∼ σ̄/(σ̄2 + 7
36

Zξ

Zσ
ξ̄2). For given σ̄ and Zξ/Zσ

the pseudo-Goldstone boson fluctuations ∆sU favor again
nonzero 〈ξ̄〉 since Ms(ξ̄ → ∞) → 0. Two parameter sets
for a numerical solution including the effects of the gauge
bosons and pseudo-Goldstone bosons are given in brackets
in (22), one with positive and one with negative ζ. (For the
last set we use k = 820 MeV.) We also have shown above
in brackets the corresponding values for various quantities
– the absence of brackets indicating that parameters are
tuned in order to obtain physical values.

The choice of the parameters in Ũk for which we have
presented results is somewhat arbitrary – we also have
found acceptable solutions for rather different sets. The
phenomenologically acceptable couplings seem not unnat-
ural and we conclude that spontaneous color symmetry
breaking is a plausible phenomenon in QCD. Two features
seem characteristic for multiquark interactions that lead
to phenomenologically acceptable solutions with the ob-
served values of M8, M1, Mπ, MK , Mη, Mη′ and Mρ. The
first is a large ratio λσ/λχ. This may be explained by the
different running of the effective couplings λσ and λχ. The
second is the large value of the effective gauge coupling g
between the gluons and color octet bilinear ξ ∼ χ̃. At first
sight this seems somewhat surprising in view of the fact
that Mρ ≈ 850 MeV is expected to act as an infrared cut-
off. Extrapolations of the two- or three-loop β-functions
in the MS-scheme into this domain would yield substan-
tially smaller values of αs(Mρ). An understanding of this
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issue needs, however, information about the relation of our
effective coupling g to the perturbative gauge coupling in
the MS scheme, and about the running of g in the non-
perturbative domain. A first discussion of this issue can
be found in [2]. We find it reassuring that the gauge bo-
son fluctuations seem not to play a dominant role for the
dynamics of spontaneous color symmetry breaking.

In conclusion, we have presented a consistent mean
field picture for gluon-meson duality. The quantitative de-
tails are not yet all settled. They would need a computa-
tion of the multiquark interactions Ũk. Without such a
computation in the framework of QCD no definite conclu-
sion on the issue of “spontaneous color symmetry break-
ing” can be drawn. Nevertheless, it is remarkable that for
reasonable multiquark couplings a simple scenario can suc-
cessfully describe all masses of the light pseudoscalar and
vector mesons and the baryons, as well as their interac-
tions.

We have identified three mechanisms by which fluctua-
tions operate in favor of a nonvanishing expectation value
〈ξ̄〉 for the color octet quark-antiquark condensate (in a
fixed gauge). Perhaps the most important one arises from
the fermion fluctuations which favor large baryon masses
and therefore nonzero σ̄, ξ̄ due to the minus sign in (19).
They induce a negative contribution to the quadratic term
∼ ξ̄2 in the effective potential. The second ingredient is
due to the fluctuations of the (pseudo-)Goldstone bosons.
Now ∆sU favors small meson masses or a large decay con-
stant f , and therefore again large σ̄, ξ̄. Finally, a third
mechanism is possible if the gluon mass is minimal for a
nonzero value of 〈ξ̄〉. This last issue depends on unknown
properties of the non-perturbative running of the gauge
coupling and is therefore less solid than the first two mech-
anisms. The combined effect of these mechanisms has to
compete with the “classical mass terms” ∼ λσ, λχ which
favor the absence of spontaneous chiral and color symme-
try breaking. The crucial dynamical question is whether
the fluctuation effects are strong enough. Finally, we also
mention a fourth mechanism which becomes possible for
ζ < 0. An increase in 〈σ̄〉 due to fluctuations lowers the
mass term for ξ̄ if ζ < −9τγ σ̄ (17). We find it plausible
that spontaneous color symmetry breaking indeed occurs
in QCD.

The quantitative validity of mean field theory remains
questionable in the strongly non-perturbative domain dis-
cussed in this note. Mean field theory should, however, in-
dicate at least the qualitative tendencies of the fluctuation
effects. We have included here the most important fluctu-

ations of the light baryons and mesons. Furthermore, we
find that the term 2λσσ̄ accounts for 82(99,95) precent of
the octet mass M8. This suggests that the neglected effects
of the residual multi-quark interactions after bosonization
are subleading. Finally, the existence of a local minimum
with 〈σ̄〉 �= 0, 〈ξ̄〉 �= 0, as found in this note, only requires
the validity of mean field theory in a neighborhood around
this minimum. Statements of this type should be more ro-
bust than a mean field computation of global properties
of the effective potential for all σ̄, ξ̄. We recall that the
main shortcoming of mean field theory is that it neglects
the effective running of the couplings, as fluctuations with
different momenta are included. In the vicinity of the min-
imum at (〈σ̄〉, 〈ξ̄〉) the only excitations with mass much
smaller than k are the pions.

It would be interesting if some qualitative results of
this investigation, namely that the color octet condensate
〈ξ̄〉 dominates Mρ, f and M1 − M8, whereas the singlet
condensate 〈σ̄〉 essentially determines M8 and the combi-
nation M2

s f2 for the pseudoscalars, could be seen in future
lattice simulations. This may be possible indirectly by a
study of the quark mass dependence of the meson and
baryon masses.
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